A comparative study of different sol-gel coatings for sealing the plasma electrolytic oxidation (PEO) layer on AA2024

Sajjad Akbarzadeh, M.-G. Olivier

Materials Science Department, Faculty of Engineering, University of Mons, 20, Place du Parc, Mons, Belgium

Abstract

Due to the intrinsic porosity of the layers formed by the plasma electrolytic oxidation (PEO) process, the application of sol-gel coatings has allured by their eco-friendly and reliable protective characteristics. Various parameters affect their performance in which the type of sol-gel precursors plays a significant role. In this study, different combinations of sol-gel precursors including Tetraethyl orthosilicate (TEOS). Methyltriethoxysilane (MTES), (3 -Glycidyloxypropyl)trimethoxysilane (GPTMS), (3-Aminopropyl)triethoxysilane (APTES), Zirconium(IV) proposide (ZTP), and 3-(trimethoxysilyl)propyl methacrylate (MAPTMS) were employed to scrutinize the sealing ability and corrosion resistance properties of the duplex PEO/sol-gel coating system on AA2024 alloy. PEO layer on AA2024 was acquired at 5 A constant anodic current, 100 Hz frequency, and 30% duty cycle in an electrolyte containing sodium silicate and potassium hydroxide. Sol-gel solutions were applied by dip-coating. To this end, Electrochemical impedance spectroscopy (EIS), as well as scanning electron microscope (SEM), results reflected the sealing ability of sol-gel coatings for the microcracks and pores filling of the PEO layer. Although all duplex coating systems revealed better corrosion protection performance than the distinct PEO layer, different sol-gel formulations and various sol-gel network properties accordingly resulted in various anti-corrosion outcomes obtained upon exposure to the 0.1M NaCl solution.

Keywords: Plasma electrolytic oxidation; Sol-gel precursors; Sealing; AA2024; EIS.